様々な材料の応力ひずみ線図
ここまでの解説で「軟鋼」をベースに応力と歪(ひずみ)について解説して来ました。応力−ひずみ線図は材料によって下図に示すように異なってきます。
上図をご覧頂くと分かると思いますが、脆性材料(オレンジのライン)は伸びにくいため、破断に至るまでのひずみが小さくなります。一方、柔らかく伸びやすい延性の材料(ブルーのライン)は、破断に至るまでのひずみが大きくなります。
脆性材料(ぜいせい)とは、字の通り「脆い(もろい)」材料のことであり、ガラスやコンクリート該当します。金属では鋳鉄が脆性材料にあたります。脆性材料は、殆ど伸びずに破断に至ります。
延性材料とは、字の通り「延びる」材料のことであり、アルミニウム、プラスチック、ゴムなどです。金属ではステンレス鋼が延性材料に該当します。延性材料は、十分に伸びた後に破断に至ります。ここまでに解説してきました軟鋼も延性材料に該当しますが、降伏した後に、伸びて破断するという違いがあります。
以上のように材料によって、描かれる線図が異なりますので、機械設計をされる際は、これらの機械的特性を良く理解した上で、材料の選定をする必要があります。
例えば、SS400などの軟鋼を使った部品の強度計算では、引張強度や降伏強度から許容応力や安全率を決定しますが、ステンレスやアルミニウムには軟鋼のような降伏点が存在しません。
このように降伏点を持たない材料の場合、0.2%の残留ひずみが残る状態を破壊と定義して軟鋼の降伏点と同じ扱いをするのが一般的です。0.2%の残留ひずみとは、1000mmの長さの材料の場合、1002mmとなります。荷重を除去した際に元の長さに戻らず0.2%のひずみ (この場合2mm)が残ります。(これは、原子間のすべりが元に戻らないことが原因です。)
以上より、降伏点を持たない延性材料の場合、荷重を除いた際に残るひずみが0.2%となる時の応力を「耐力」と定義して、材料の強度の目安とされることが多いようです。
「材料力学は難しい。。。」
「何となく理解できているけど、どこかモヤモヤしている。。。」
「設計者として何とかマスターしたい!」
という声をよく聴きます。
あなたもこのような悩みをお持ちではないでしょうか?
これらの悩みをスッキリ解決したいと思いませんか?
材料力学は、一般的に難解な学問です。
設計経験の長い設計者であっても、本当に理解している人が少ないです。
(ベテラン設計者でも悩んでいる方はたくさんいます)
そんな方達を対象に、私たちは30年以上にわたって、
設計者が「理解しやすい材料力学の座学」を開催してきました。
その30年の教育ノウハウを、Eラーニングとして提供しています。
・広範囲に渡る材力のどこを押さえておけば実務に活かせるのかわかるようになる
・5つの力に対する応力の求め方が明確になる
・手計算で様々な形状の強度を求めることができるようになる
・求めた応力の評価方法が理解できるようになる
・解析で得られた結果を正しく評価できるようになる
・3次元や組み合わせ応力が理解できるようになる
▼ 超初心者向け 【動画セミナー】
「鉛筆や消しゴムなど身近なものを使ったやさしい学習法」
→ 強度設計超入門セミナー(録画版)
▼ 初心者向け 【Eラーニング】
「工学知識0でも大丈夫、材料力学の基礎が身につく!」
→ 強度設計入門講座
▼ 中堅設計者向け 【動画セミナー】
「クレーン等の機械を題材に実務で使える考え方と応用力が身につく!」
→ 強度計算書作成セミナー(録画版)